
Nuclear Instruments and Methods in Physics Research A 1063 (2024) 169320

Available online 4 April 2024
0168-9002/© 2024 Elsevier B.V. All rights reserved.

An experimental application of machine learning algorithms to optimize 
the FEL lasing via beam trajectory tuning at Dalian Coherent Light Source 

Jitao Sun a,c, Xinmeng Li a,c, Jiayue Yang a, Li Zeng b, Jiahang Shao b,d, Yong Yu b,d,*, 
Weiqing Zhang a,**, Xueming Yang a,d 

a Dalian Coherent Light Source and State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 
116023, China 
b Institute of Advanced Science Facilities, Shenzhen, 518107, China 
c University of Chinese Academy of Sciences, Beijing, 100049, China 
d Center for Advanced Light Source, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China   

A R T I C L E  I N F O   

Keywords: 
Free-electron laser 
Genetic algorithm 
Deep reinforcement learning 
FEL lasing optimization 
Dalian Coherent Light Source 

A B S T R A C T   

The lasing optimization of Free-Electron Laser (FEL) facilities is a time-consuming and challenging task. Instead 
of operating manually by experienced operators, implementation of machine learning algorithms offers a rapid 
and adaptable approach for FEL lasing optimization. Recently, such an experiment has been conducted at the 
vacuum ultraviolet FEL facility - Dalian Coherent Light Source (DCLS). Four algorithms, namely the standard and 
the neural network-based genetic algorithms, the deep deterministic policy gradient and the soft actor critic 
reinforcement learning algorithms, have been employed to enhance the FEL intensity by optimizing the electron 
beam trajectory. These algorithms have shown notable efficacy in enhancing the FEL lasing, especially the 
reinforcement learning ones which achieved convergence within only approximately 400 iterations. This study 
demonstrates the validity of machine learning algorithms for FEL lasing optimization, providing a forward- 
looking perspective on the automatic operation of DCLS.   

1. Introduction 

Free-Electron Laser, characterized by its high peak power, narrow 
bandwidth, and ultrafast pulses, has been developed as an indispensable 
tool in the fields of physics, chemistry, material, and life sciences [1–3]. 
In the extreme ultraviolet and X-ray region, several high-gain FEL fa-
cilities have been constructed and operated as user facilities for the 
science community [4–12]. In these FEL facilities, beam tuning is 
frequently required by the FEL user experiments, including regular FEL 
wavelength switching and pulse energy optimization. It is crucial to 
swiftly optimize the FEL performance to guarantee the continuity of the 
user experiments. Traditionally, such optimization is manually con-
ducted by FEL operators. This approach proves to be time-consuming 
due to the large number of tuning parameters. Furthermore, the opti-
mization results are contingent upon operators’ experience. 

To overcome these issues, machine learning has been introduced into 
the field of accelerators and FELs in recent years [13–18], especially the 
genetic algorithms (GA) [19–21] and the deep reinforcement learning 

algorithms (RL) [22–27]. GA has been used to optimize electron beam 
dynamics in accelerators, such as the linac optimization for various 
application requirements in the proposed UK’s New Light Source [19], 
the Pareto fronts of beam emittance and bunch length optimization in 
superconducting FEL injectors [20]. However, GA is not universally 
effective in addressing search problems characterized by a large number 
of variables. Consequently, a neural network-based genetic algorithm 
(NNGA) has been formulated and effectively utilized for the optimiza-
tion of nonlinear beam dynamics in High Energy Photon Source (HEPS) 
[21]. RL has also been adopted in accelerator facilities, such as precise 
alignment of superconducting modules in CAFe-II [22], beam pointing 
adjustment and beam size matching in the DESY ARES particle accel-
erator [23]. Furthermore, RL has also been used to optimize FEL Lasing 
performance with theoretical simulation and experimental demonstra-
tion respectively in SXFEL and FERMI@Elettra [24–27]. 

In these optimizations, it is a core issue to balance the exploration 
and exploitation [28]. Exploration refers to trying unknown actions to 
discover more valuable strategies, while exploitation involves using 
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known knowledge to gain the maximum reward. In machine learning 
algorithms, since the absolute optimal solution is unknowable in com-
plex environments, the algorithms aim to find a solution that is as good 
as possible, one that approximates the global optimum in terms of per-
formance. Genetic algorithms ensure exploration by randomly gener-
ating initial populations and through crossover and mutation 
operations. By employing selection processes to retain individuals with 
better fitness, they can maintain diversity in sufficiently large pop-
ulations, enabling the exploration of various solution regions. This 
approach facilitates the discovery of and eventual convergence to a 
global optimum [29,30]. In reinforcement learning, the introduction of 
noise or entropy enhances the algorithm’s exploration capabilities [31]. 
This method not only encourages the exploration of previously unen-
countered states but also prevents the algorithm from prematurely 
converging on suboptimal solutions. By systematically utilizing the in-
formation from explored areas, the algorithm balances the relationship 
between exploration and exploitation. This balance enables the agent to 
efficiently explore the solution space and gradually refine its policy 
based on the cumulative rewards received, until it converges on a so-
lution that maximizes long-term rewards [32]. 

The machine learning shows different performance at different FEL 
facilities. To evaluate the performance of machine learning at Dalian 
Coherent Light Source facility, an exploratory experiment with GA/ 
NNGA and RL has been recently conducted for FEL lasing optimization. 
First, both GA and NNGA have been employed to optimize the machine, 
as well as gather data for developing a surrogate model intended for RL 
training purposes. Then, both deep deterministic policy gradient 
(DDPG) and soft actor critic (SAC) RL algorithms [33,34] have been 
evaluated in the surrogate model and the machine optimization. The 
remainder of the manuscript is organized as follows. Sec.2 introduces 
the machine learning algorithms used in DCLS experiment. Sec.3 de-
scribes the experimental conditions and procedures. Sec.4 presents the 
optimization of FEL lasing performance with GA/NNGA and DDPG/SAC 
at DCLS, accompanied by a detailed discussion of these algorithms. Sec. 
5 concludes this study. 

2. Machine learning algorithms used in DCLS facility 

In this study, several machine learning algorithms have been adop-
ted for the FEL lasing optimization, including genetic algorithms (GA, 
NNGA) and reinforcement learning algorithms (DDPG, SAC). This sec-
tion gives a brief description of these algorithms. 

2.1. Genetic algorithms – GA and NNGA 

GA, known for its robustness in variable space exploration, exhibits 
strong global optimization capabilities [35,36]. Inspired by the princi-
ples of biological evolution, GA seeks the optimal objectives through 
several evolutionary steps including population initialization, fitness 
computation, selection, crossover and mutation. However, constraints in 
computational capacity and data acquisition efficiency limit the popu-
lation size of GA, resulting unsatisfactory and time-consuming results in 
certain scenarios. NNGA has been proposed in order to magnify the 
population size and accelerate the convergence speed. Data generated 
by the GA is used to train the neural network, and the network is then 
employed to predict the fitness of a large number of individuals. Ac-
cording to the fitness, the most competitive individuals are selected for 
the next generation evolution. Benefiting from the outstanding perfor-
mance of neural network in regression problems [37,38], NNGA shows 
faster convergence speed and richer diversity. In our study, a 
single-objective GA and NNGA have been applied for FEL lasing opti-
mization, and the corresponding environments and results have been 
used to create a surrogate model for the testing of DDPG and SAC 
methods. 

2.2. Reinforcement learning algorithms – DDPG and SAC 

Neural networks that elucidate the implicit relationship between 
inputs and outputs are the core of deep RL algorithms, ensuring the 
optimization capabilities in complex, dynamic, and partially observable 
systems [32,37,39]. RL trains the neural networks by the interaction of 
an agent with the environment continuously. It aims to maximize the 
total return Rt by optimizing algorithm policy π in the interaction. After 
the agent selects action at following policy π at time step t, the envi-
ronment staying at the state st transfers to state st+1 and provides the 
agent with a present reward rt as feedback. The agent iteratively opti-
mizes its policy π through training the actor-critic network to maximize 
the total return Rt =

∑∞
k=0γkrt+k(st+k,at+k), where the discount factor γk 

denotes the discount evaluation of the future k-step rewards reflected in 
the current state st. 

DDPG and SAC are commonly employed in the realm of RL algo-
rithm. The primary differences between them are embodied in the 
computation of the value function Q(st , at) within the critic network and 
the introduction of policy entropy, where Q(st , at) represents the ex-
pected return for choosing action at in state st. As shown in Fig. 1(a), 
DDPG employs one critic network and one actor network to respectively 
estimate the Q function and select the optimized actions. The critic 
training purpose is to minimize the error of the predicted Q function and 
the target QDDPG

target function, as expressed in Eq. (1) [33]. Meanwhile, the 
actor training purpose is to maximize the policy’s objective function 
JDDPG(π) shown in Eq. (2). 

QDDPG
target (st, at)= rt + γQ(st+1, π(st+1)) (1)  

JDDPG(π)= E(st ,at)∼π[Q(st, at)] (2) 

SAC, as an enhancement of DDPG, utilizes two critic networks (k = 1,
2) for Q function prediction to improve the training stability, as shown in 
Fig. 1(b). Additionally, policy entropy H is introduced to encourage 
exploration [34]. The target value function QSAC

target and the policy’s 
objective function JSAC(π) are consequently converted into Eq. (3) and 
Eq. (4), 

QSAC
target(st, at) = rt + γ

(
mink=1,2Qk(st+1, π(st+1) ) + αH(π(⋅|st+1))

)
(3)  

JSAC(π) = E(st ,at)∼π[Q(st, at) + αH(π(⋅|st)) ] (4)  

where α is the temperature parameter to control the level of policy en-
tropy. As a result, SAC exhibits more stable and superior performance in 
most complex environments. 

3. The experimental conditions and procedures 

This section provides a comprehensive description of the experiment, 
encompassing the experimental conditions and procedures in detail. 

3.1. The experimental conditions 

The experiment was carried out in the FEL amplifier section at DCLS, 
a high-gain FEL facility operating in the vacuum ultraviolet (VUV) re-
gion with wavelength of 50–150 nm [8,40], as shown in Fig. 2. The 300 
MeV, 200 pC electron beam from the linac travels though the FEL 
amplifier and generates FEL pluses with a repetition rate of 10 Hz. To 
obtain fully-coherent FEL pulses, the facility was designed to operate in 
high-gain harmonic generation (HGHG) mode [41], in which the elec-
tron beam is modulated by a seed laser in the modulator (Mod) and 
generates FEL pulses at a higher harmonic of the seed laser in the 
radiator (Rad). Additionally, corrector and quadrupole magnets are 
implemented to control the trajectory and electron beam size to enhance 
FEL lasing amplification. 
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3.2. The experimental procedures 

This study aims to evaluate the performance of GA/NNGA and 
DDPG/SAC algorithms for FEL lasing optimizations at DCLS facility. In 
the experiment, a total of 12 correctors (CH/CV) positioned between the 
linac and the radiator were employed as both actuators and optimized 
variables. They influence the FEL lasing performance by controlling the 

electron beam trajectory for laser modulation in the modulator and FEL 
amplification in the radiator. The correctors and quadrupoles along the 
radiator were not set as optimized variables. Their strengths were 
optimized by experienced operators in the initial stage and kept un-
changed throughout the following stages. Although the beam trajectory 
was affected by the quadrupoles while the beam passed off-axis, it didn’t 
affect the algorithms’ optimizations as the radiator was treated as an 

Fig. 1. The flow charts of the DDPG (a) and SAC (b) algorithms.  

Fig. 2. The FEL amplifier layout of DCLS.  
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entire component. The global beam trajectory along the radiator was 
controlled solely by the aforementioned upstream 12 correctors and was 
checked by the beam position monitors (BPMs) along the radiator. 

In our experiment, in order to mitigate the challenge of reward 
sparsity caused by the electron beam loss, the objective function en-
compasses both the FEL pulse energy measured by a photodiode [42] at 
the exit of radiator and the electron bunch charge obtained from the 
BPMs, shown as: 

0.01
∑

i

QBPMi

QBPMi
0

+
I
I0

(5)  

where QBPMi
0 (I0) and QBPMi (I) represent the initial and currently 

measured bunch charge (FEL pulse energy), respectively. As the opti-
mization starts, the objective function value is primarily influenced by 
the bunch charge, predominantly due to the beam loss issue, which is 
gradually resolved as the charge-driven reward increases. Subsequently, 
the optimization process shifts its focus towards maximizing the FEL 
pulse energy. 

Before the experiment, the machine was manually optimized to 
about 60 μJ at the wavelength of 115 nm by experienced operators. 
Then, the aforementioned 12 correctors were randomly initialized, and 
the pulse energy decreased to a few microjoules. This condition was 
marked as the initial state of the subsequent algorithm optimizations. 
Both GA/NNGA and DDPG/SAC algorithms employ identical optimiza-
tion variables, objective function, and initial state. The state space for 
the DDPG/SAC algorithms includes the currents of 12 correctors, as well 
as the beam positions and bunch charges obtained from the BPMs in the 
linac and FEL amplifier. In order to mitigate the impact of the jitters 
induced by the instabilities of RF power, magnet currents and other 
hardware, each data point obtained in the experiment was averaged 
over 10 shots. Taking into account the corrector response time, the 
duration for collecting each data point was approximately 3 seconds. 

The experiments have been carried out as follows. First, the GA/ 
NNGA algorithms were implemented in the facility. Then, leveraging the 
robust variable space exploration capability of GA/NNGA, experimental 
data obtained from the first step has been utilized to develop a surrogate 
model for virtual testing of DDPG/SAC performance. Finally, the DDPG/ 
SAC algorithms were applied in the surrogate model and the real facility 
to optimize FEL lasing. 

4. The performance of GA/NNGA and DDPG/SAC in DCLS 

This section mainly presents the FEL lasing performance with GA/ 
NNGA and DDPG/SAC algorithms in DCLS facility, where the algorithm 
libraries in Python codes have been used [43–45]. This section also 
describes the development and application of the surrogate model. 

4.1. The experimental performance of GA/NNGA and the corresponding 
surrogate model 

Initially, the GA algorithm was employed with a population size of 
200 individuals per generation. Considering the limitations of time, this 
optimization was terminated after 17 generations. As illustrated in Fig. 3 
with blue curves, the FEL pulse energy of the optimal individual reached 
69.13 μJ, whereas that of the optimal generation was merely around 
9.86 μJ. This notable disparity between the two outcomes indicates non- 
convergence. To improve the convergence speed, NNGA algorithm was 
employed. The evolutionary process for the initial five generations 
remained consistent with that of the GA algorithm. Starting from the 
sixth generation, a multi-layer perceptron (MLP) [46] was introduced to 
increase the population size and identify superior individuals using 
accumulated data from previous experimental generation. A population 
of 2000 individuals, ten times the size of a single generation’s popula-
tion in GA, was generated with their fitness values evaluated using the 
MLP model. The top 200 individuals in the evaluation were selected to 

form the next generation’s population. These individuals were then 
utilized in the real facility to obtain actual measured fitness values, 
expressed in Eq. (5). As depicted by the red colors in Fig. 3, FEL pulse 
energies of both the optimal individual and the generation reached 
flat-top after the ninth generation. The converged energies were 
measured at 81.65 μJ and 61.57 μJ, respectively. Compared to GA, 
NNGA demonstrates a much faster convergence speed, considerably 
decreasing the convergence step required (approximately 1800 vs. much 
larger than 3400), as presented in Table 1. 

As a user facility, DCLS has limited available time for this study. To 
address this constraint, a surrogate model was created using MLP based 
on the experimental data collected from the GA and NNGA optimiza-
tions. This surrogate model was then utilized for offline testing and 
preliminary hyperparameter selection of DDPG and SAC algorithms. The 
model takes the currents of the 12 correctors as its inputs and produces 
the predicted FEL pulse energy, beam positions and charges of all BPMs. 
As an illustration, the predicted FEL pulse energies (orange) and the 
original experiment data (green) are compared in Fig. 4. To evaluate the 
prediction performance of this model, the R2 parameter is calculated as 
[27], 

R2 = 1 −

∑

i
(Ii − Pi)

2

∑

i
(Ii − I)2 (6)  

where Ii and Pi denote the measured and predicted FEL pulse energies, 
respectively, I is the average value of Ii. A R2-value of 0.92 was attained, 
signifying a high level of agreement between the surrogate model and 
the real facility. Although a slight deviation is observed in the high- 
energy region, which was caused by the sparsity of the corresponding 
experimental data (as depicted in Fig. 3), it does not significantly impact 
the training process and the surrogate model was deemed adequate for 
evaluating the performance of DDPG and SAC algorithms. 

Fig. 3. The experimental results with GA (blue) and NNGA (red) at DCLS fa-
cility. The light color and dark color represent the individual and generation 
results, respectively. 

Table 1 
The convergence performance of GA/NNGA and DDPG/SAC algorithms in DCLS 
FEL lasing optimization.  

Algorithm Converg. step (#) Converg. time (mins) FEL pulse energy (μJ) 

GA ≫3400 ≫164 9.86 
NNGA 1800 90 61.57 
DDPG-exp. 540 27 70.45 
SAC-exp. 420 21 64.26 
DDPG-sim. 443 – 57.60 
SAC-sim. 333 – 66.20  
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4.2. DDPG and SAC performance in the surrogate model and the 
experiment 

The performance of DDPG and SAC algorithms have been evaluated 
both in the surrogate model and the actual facility with the same pro-
cedures. At the beginning of each algorithm, a warm-up phase was 
conducted with the initial 128 steps executed with random actions. 
Subsequently, a training process consisting of 50 steps, followed by an 
evaluation process of 10 steps, was iterated until convergence. To 
enhance the exploration capability, a Gaussian noise was added to the 
actions in the training process, while in the evaluation process the 
performance of the algorithms was evaluated without noise. 

The algorithms were firstly tested in the surrogate model before 
being implemented at the actual facility, with further hyperparameter 
optimization. Both the experimental and simulation results are shown in 
Fig. 5. Fig. 5(a) and (b) present the experimental results of DDPG and 
SAC respectively, illustrating the training process, evaluation process 
and corresponding tendency. Each tendency curve, as shown in Fig. 5(c), 
is generated by averaging the values obtained during each 10-step 
evaluation, effectively representing the convergence performance of 
the algorithm. The solid curves with light color represent the results for 
100 random warm-up phases in the simulation, while the dark curves 
represent the corresponding average of these light-colored curves. For 
the experiment, the DDPG and SAC results are represented by the dashed 
curves with triangular markers in red and blue, respectively. The 
convergence criteria for the tendency curves in both the simulation and 
experiment were defined as the intensity increment between two 

consecutive evaluations being less than 5%. In the simulation (experi-
ment), the average convergence steps for DDPG and SAC were recorded 
as 443 (540) and 333 (420), respectively, with corresponding FEL pulse 
energies of 57.60 (70.45) μJ and 66.20 (64.26) μJ, the experiment agrees 
well with the simulation. These results are also presented in Table 1. The 
FEL pulse energies yielded by both algorithms are comparable, with SAC 
demonstrating slightly better performance than DDPG in terms of 
convergence steps. Additionally, the RMS intensity fluctuations at the 
convergence step for DDPG and SAC in the simulation were 24.7% and 
10.4% respectively. The SAC exhibits greater stability, whereas the 
DDPG, constrained by its limited exploration capabilities, is more sus-
ceptible to premature convergence. 

4.3. Discussion about GA/NNGA and DDPG/SAC 

The previous sections have extensively discussed the FEL lasing 
performance at DCLS with GA/NNGA and DDPG/SAC algorithms where 
the results are summarized in Fig. 6 and Table 1. In the experiments, 
NNGA, DDPG and SAC have demonstrated the ability to attain optimal 
FEL lasing performance, while GA has failed considering the time limi-
tations. In addition, the convergence time of GA/NNGA is much longer 
than that of DDPG/SAC, the former is about a few hours or more while 
the latter is only about 20 minutes. 

The trajectory of the electron beam in the radiator, which was 
controlled by the aforementioned 12 correctors, determined the FEL 

Fig. 4. Comparison of the predicted results in surrogate model (orange) and the 
experimental data (green) originated from GA/NNGA optimizations. 

Fig. 5. The results of DDPG and SAC algorithms at DCLS. The experimental results with DDPG (a) and SAC (b), the light-colored curves and the dotted makers 
represent the training and evaluation processes respectively, the dark-colored curves indicate the average value in each evaluation. (c) The comparison of the 
simulation and experiment results with DDPG (red) and SAC (blue), the solid curves with light and dark colors represent the evaluated results with different initial 
random warm-up phases in the surrogate model and the corresponding average results respectively, the dashed curves marked with triangular markers represent the 
average evaluation results shown in (a) and (b). 

Fig. 6. The FEL lasing performance of GA/NNGA and DDPG/SAC in DCLS fa-
cility. The tendency curves of GA (red), NNGA (blue), DDPG (black) and 
SAC (green). 
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lasing performance. The trajectory was measured by the BPMs at either 
the entrance or the exit of the radiator undulators (Rad), except for the 
one at the Rad2 entrance due to its faultiness. The trajectory indicated 
by the measured beam positions (x and y) is shown in Fig. 7 via heat 
maps. The region with positive values in each map represents the 
exploration area of each algorithm. The area explored by GA is the 
widest, followed by NNGA, SAC, and DDPG. This observation agrees 
well with the expected characteristics of each algorithm. Specifically, 
DDPG/SAC exhibit weaker exploration capabilities than GA/NNGA, and 
the integration of SAC with policy entropy provides it a wider explora-
tion range than DDPG. As a consequence, the convergence speed of GA/ 
NNGA is slower. Despite considerable variations in convergence speeds, 
all four algorithms ultimately converge to similar electron beam tra-
jectory, as illustrated in Fig. 7(a–e). Compared to GA, NNGA/DDPG/SAC 
employ the MLP to distinguish the effective exploration area and obtain 
the optimal results quickly. 

5. Conclusion 

This study demonstrates the validity of machine learning algorithms 
for FEL lasing optimization at DCLS. Among the four algorithms applied 
in this study, GA is the most time-consuming one as it didn’t reach 
convergence after several hours of experiment time. With the integra-
tion of neural networks, NNGA reached convergence within approxi-
mately 1.5 hours. DDPG and SAC have demonstrated much better 
performance where convergences were achieved about 20 minutes. 
Furthermore, a surrogate model was created based on the data gener-
ated in the GA/NNGA experiment. It reconstructed the facility envi-
ronment virtually enabling the offline evaluation and initial 

hyperparameter selection of DDPG and SAC. This study was conducted 
in a normal-conducting FEL facility with a low pulse repetition rate of 
10 Hz. For higher-repetition-rate facilities, such as superconducting 
continuous-wave FEL facilities with 1 MHz beam [47–50], machine 
learning algorithms possess a significant advantage in terms of conver-
gence time. 

This study demonstrated the outstanding performance of machine 
learning in the short-term FEL lasing optimization at DCLS. Another 
concerning point is about the long-term capability. Due to the influence 
of slow drifts from various devices (e.g. drive/seed lasers, radio- 
frequency powers, magnets, synchronizing system), the FEL facility 
environment changes over time, making the previously optimized pop-
ulations/networks no longer fully effective. For genetic algorithms, they 
can adapt to small changes by proceeding the optimization based on 
previous populations [51]. For reinforcement learning, the under-
standing of the agent concerning the environment and targets is 
embedded within the actor-critic neural network. When the environ-
ment changes, the original network might not directly provide the best 
solution. However, the new network can be trained with the original 
ones. This approach, known as transfer learning [52], allows for the 
inheritance of previous experiences and can significantly expedite the 
training process. In a word, the reusability and robustness of these al-
gorithms in a long-term could also be guaranteed. In future, additional 
optimization variables will be incorporated into the algorithms with the 
aim of achieving automated optimization and operation of DCLS in a 
long term. 

Fig. 7. The exploration capacity of GA/NNGA and DDPG/SAC in DCLS experiments. The exploration capacity and convergence status expressed in electron beam 
positions measured by the undulator BPMs, the alphabetical subgraphs correspond the BPMs located at the entrance of Rad1/3/4/5 and the exit of Rad5 respectively, 
the algorithm names are labeled at the top of the corresponding insets. 
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