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ABSTRACT: This work reports the observation and characterization of

heterobinuclear transition-metal main-group metal oxide carbonyl complex anions,
RuGeO(CO),” (n =3-5), by combining mass-selected photoelectron velocity map

.
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imaging spectroscopy and quantum chemistry calculations. The experimentally : 9
determined vertical electron detachment energy of RuGeO(CO);” surpasses those 0 g e oo o
of RuGeO(CO),” and RuGeO(CO);~, which is attributed to distinctive bonding Triple Bonds b
features. RuGeO(CO);~ manifests one covalent 6 and two Ru-to-Ge dative x @ M

bonds, contrasting with the sole covalent ¢ bond present in RuGeO(CO),” and

Single Bonds

RuGeO(CO);". Unpaired spin density distribution analysis reveals a 17-electron

configuration at the Ru center in RuGeO(CO);~ and an 18-electron configuration in RuGeO(CO),” and RuGeO(CO);™. This
work closes a gap in the quantitative physicochemical characterization of heteronuclear oxide carbonyl complexes, enhancing our
insights into catalytic processes of CO/GeO on the metal surface at the molecular level.

C arbon monoxide (CO) oxidation on bulk material
surfaces is pivotal in numerous industrial processes,
such as Fischer—Tropsch chemistry, acetic acid synthesis,
alcohol synthesis, and hydroformylation.'™ Metal clusters
representing low-coordinate sites on surfaces are often used as
models for studying the surface chemistry of bulk materials,
which can provide valuable insights into the alteration of
chemical bonds on the most active or least coordinated sites of
a catalyst.”'" Moreover, the synergy effects observed in the
chemical processes are expected to be responsible for the high
catalytic performance of heterobinuclear metal complexes.'' ™"
Therefore, investigating heterobinuclear metal and metal oxide
carbonyls represents an ideal model system,'*™"® because such
studies not only yield significant understanding of the chemical
bonding nature of metal—metal or metal—carbon interactions
at the molecular level but also aid in comprehending the
synergy effects of various transition metals on the catalytic
performance of CO absorption on metal surfaces.

Recently, gaseous heterobinuclear metal—iron carbonyls
have been generated and characterized utilizing mass-selected
infrared spectroscopy and photoelectron spectroscogf com-
bined with advanced quantum chemistry calculations.'*~>* For
all heterobinuclear metal—iron carbonyls, the CO ligands were
found to adopt a common terminal coordination to the metal
atoms. However, diverse chemical bonding features, including
covalent metal—metal single or multiple bonds, were identified
for the metal—iron interactions depending on the CO ligand
numbers and the electropositive nature of the metals,””*" such
as a half bond in ZnFe(CO)5 carbonyl,” a ¢ single bond in
the MgFe(CO),” structure,” one o single bond and two
dative 7 bonds in BeFe(CO), and UFe(CO),~,***" a triple
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bond in AFe(CO); (A = Ge, Sn, Pb, As, Sb, and Bi),”**” and
an unprecedented quadruple-bond interaction for AFe(CO),
(A = Sc, Y, La).”® Heterodinuclear iron oxide carbonyls,
represented by OUFe(CO),”, exhibit an identical chemical
bonding profile to UFe(CO);™.> So far, heterodinuclear metal
oxide carbonyls simultaneously containing both main group
and transition metals remain unexplored. Given the significant
role of heterobinuclear oxide carbonyls in CO oxidation via the
Langmuir—Hinshelwood-like mechanism, further research in
this field is warranted.

Main group metal element germanium (Ge) and its oxides
have important applications in fields like aerospace, solar cells,
and biomedicine, in addition to their potential as catalysts in
the optical industry.*>~>" Moreover, ruthenium (Ru), as a
homotope of iron, has similar chemical reactivity.”®™*’
Investigating the reaction of CO with the Ru—GeO
heterodimers would not only help understand the chemical
bonding between main group metal and transition metal but
also can be used as a model system to study CO/GeO
oxidation on metal surface from the molecular level, thereby
facilitating the exploration and development of novel catalysts.

For this purpose, we performed laser vaporization of Ge—Ru
alloy rods in a buffer gas atmosphere comprising 5% CO
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seeded in helium to yield a series of heterobinuclear transition
metal—main group metal oxide carbonyls, among which the
RuGeO(CO),” (n =3—=5) cluster anions that we are interested
in are mass-selected and characterized by photoelectron
velocity map imaging spectroscopy with 355 nm photons.
The detailed experimental process is listed in the Supporting
Information. The recorded 355 nm photoelectron spectra

(PES) of RuGeO(CO),” (n = 3—5) are exhibited in Figure 1,
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X
RuGeO(CO)3~
X
RuGeO(CO)4
X
RuGeO(CO)5~
T ) e )
1.0 1.5 2.0 2.5 3.0 3.5

Binding Energy (eV)

Figure 1. Photoelectron spectra of RuGeO(CO),” (n = 3=5) at 35S
nm (3.496 eV).

all exhibiting a single broad band labeled as X without any
discernible vibrational details being resolved. The experimental
vertical detachment energy (VDE) values, directly measured
from the band maximum of each spectrum, do not follow a
monotonically increasing trend with the number of CO ligands
but, rather, showcase where RuGeO(CO),” (3.20 eV) >
RuGeO(CO),” (2.89 eV) < RuGeO(CO);~ (3.08 eV).
However, according to the previously reported PES results of
M(CO), " the negatively charged electron is commonly
stabilized upon the progressive binding of CO molecules,
which renders an increase in VDEs with cluster size. Thus, the
nonmonotonic behavior observed in the VDE values may
imply significant transitions of geometrical and electronic
structures upon electron detachment. In addition, the hot
bands substantially contribute to the broad bands for the n = 3
and 4 complexes, characterized by exceptionally prolonged and
gentle rising edges. A close examination indicates that
RuGeO(CO),” has a larger slower front rising edge than
that in n = 3, which is attributed to the hot band and a possible
two-photon process due to the different bonding properties
between them (see subsequent structral discussion), as in
previously reported [B,(CN)4]>~ dianion.”' Consequently,
determining the adiabatic detachment energy (ADE) value
directly from the spectral onset is unfeasible; instead, it is
derived by extending a line from the leading edge of the VDE
peak and adding the instrumental resolution at the point where
the line intersects with the horizontal axis. As a result, the ADE
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values of RuGeO(CO),” (n = 3—5) are estimated to be 2.65 +
0.04 eV, 2.20 + 0.06 eV, and 2.93 + 0.03 eV, respectively,
demonstrating a comparable trend to the VDE values.

On the basis of the experimentally recorded photoelectron
spectra, quantum chemical calculations were performed to
locate the encoded geometric and electronic structures and aid
in spectral assignments (refer to the Supporting Information
for details). For each RuGeO(CO),” (n = 3=5), nine low-
lying isomers labeled as na-ni, along with their relative energies
(REs), were calculated and are provided in Figures S1—S3.
Following the Boltzmann distribution law, only the three
lowest-energy isomers for each complex anion, as depicted in
Figure 2, were considered for further ADE/VDE value
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Figure 2. Optimized structures of the lowest-energy isomers for
RuGeO(CO),” (n = 3=5) (Ge, blue; Ru, black; C, gray; O, red).
Relative energies are given in eV.

calculations and spectral simulations to identify the structures
that contribute to experiments. Table 1 compares the
calculated REs, ADE, and VDE values of these isomers at
the B3LYP/6-311G(d) (Ge, C, and O)/def2-TZVPP (Ru)
level. Apparently, the high-lying 3b, 3¢, 4b, 4¢, Sb, and 5c
isomers can be readily ruled out due to their relatively high
REs of at least 0.20 eV, considerably smaller ADE/VDE values,
and distinctively different simulated spectral patterns relative to
the experimental results (Figure S4). In contrast, the calculated
ADE/VDE values of 2.45/3.23, 2.06/2.99, and 2.82/2.98 eV
for the lowest-lying 3a, 4a, and Sa isomers are in excellent
agreement with the corresponding experimental data of 2.65/
3.20, 2.20/2.89, and 2.93/3.08 eV (Table 1), respectively. The
simulated density of states (DOS) spectra®” in Figure S$4 also
nicely reproduce the experimental spectral contours, further
confirming the exclusive existence of these lowest-lying
isomers.

The 3a isomer possesses a “A’ electronic state with C,
symmetry, where all three carbonyl ligands coordinate to the
Ru center, and the GeO group is also bonded to the Ru atom
via the less electronegative Ge atom, forming a triangular
pyramid geometry. Similar to the previously reported
heterobinuclear metal—iron clusters MFe(CO),” (M = Be,
Mg, Ti, V, and Cr),'®**** the 4a isomer shares the same
geometric symmetry and electronic state as 3a, featuring three
terminal CO ligands in the equatorial plane, one terminal CO
ligand in the axial plane, and a terminal GeO ligand with an
obtuse Ru—Ge—O0 angle. In the Sa isomer, the building block
of 4a remains largely unchanged, while the fifth CO loosely
interacts with the Ge atom via physical absorption. The bond
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Table 1. Comparison of Experimental VDE and ADE Values (in €V) to B3LYP/6-311G(d) (Ge, C, O)/def2-TZVPP (Ru)
Calculated Results of the Lowest-Energy Isomers for RuGeO(CO),” (n = 3-5)

Cluster Isomer Relative energy (eV)
RuGeO(CO);~ 3a 0.00
3b 0.21
3¢ 0.65
RuGeO(CO),~ 4a 0.00
4b 0.60
4c 1.14
RuGeO(CO)s~ Sa 0.00
Sb 0.20
Sc 0.37

“Numbers in parentheses represent the uncertainty in the last digit.

VDE ADE
Expt.” Calc. Expt.~ Calc.
3.20(1) 323 2.65(4) 2.45
2.37 1.80
1.84 1.67
2.89(3) 2.99 2.20(6) 2.06
1.88 1.57
2.69 2.10
3.08(2) 2.98 2.93(3) 2.82
2.69 2.58
2.46 2.26

lengths and Wiberg bond indices (WBIs) orders of the Ge—Ru
bonds in RuGeO(CO),” (n = 3—S) anions are detailed in
Table 2. Notably, the Ge—Ru distance in RuGeO(CO);~

Table 2. Ge—Ru Bond Lengths (A), Bond Orders of
RuGeO(CO),” (n = 3—5) Calculated at the B3LYP/6-
311G(d) (Ge, C, O)/def2-TZVPP (Ru) Level of Theory

Species Ge—Ru bond length Wiberg bond order
RuGeO(CO);~ 2.35 1.08
RuGeO(CO),” 2.64 0.58
RuGeO(CO),~ 2.63 0.59

(2.350 A) is much shorter than that in RuGeO(CO),”
(2.642 A) and RuGeO(CO);~ (2.632 A), consistent with
the calculated WBIs of 1.084 (3a), 0.584 (4a), and 0.592 (5a).
The variation of bond distances and orders, as well as the
decreasing Ru—Ge—O angle from 3a to 4a and Sa, suggests a
change in the Ru—Ge bonding nature. The C—0O/Ge—0 bond
distances in all complexes were calculated to be around 1.16/
1.65 and 1.67 A (Figure SS), slightly longer than those of free
CO/GeO molecules (1.13/1.63 A), suggesting weakening of
the C—0O/Ge—0 bonds.

To further elucidate the chemical bonding properties of the
Ru—Ge interaction in the lowest-lying na structures of
RuGeO(CO),” (n = 3—5), an analysis of their frontier
molecular orbitals was conducted. Figure 3 illustrates the
highest occupied molecular orbitals (HOMO) extending to the

HOMO
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Figure 3. Molecular orbitals of the most stable isomers for
RuGeO(CO),” (n 3-5) calculated at the B3LYP/6-311G(d)
(Ge, C, 0)/def2-TZVPP (Ru) level of theory, showing the highest
occupied molecular orbitals (HOMOs) down to the sixth valence
molecular orbital from the HOMO. Energies are given in eV.
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sixth valence molecular orbital from the HOMO, with relative
orbital energies provided. The orbital composition analyses
using the natural atomic orbital (NAO) method of the frontier
Kohn-Shan MOs for these species are shown in Tables S3—S5.
For RuGeO(CO);~, the HOMO and HOMO-1 are featured
by two dative 7-type Ru-to-Ge interactions, with an orbital
composition contribution of 64% (hybrid orbitals of Ru: 29%
4d + 1% Ss + 27% Sp; Ge 7% 4p) and 64% (hybrid orbitals
Ru: 43% 4d + 17% Sp; Ge: 4% 4p), respectively. The
HOMO-2 (—2.18 eV), an energy degenerate orbital of
HOMO-1 (2.15 eV), is an evident o-type Ru—Ge electron-
sharing bonding orbital formed from the combination of Ru 4d
and Sp hybrid orbitals (39% 4d + 14% Sp) and Ge 4s and 4p
hybrid orbitals (10% 4s + 2% 4p). The HOMO-3 and
HOMO—4 predominantly consist of 70% contributions from
the 3d orbitals of the Ru atom, showcasing notable Ru 3d to
CO 2p* back-donation. HOMO—5 and HOMO—6 refer to
Ge—O 7 bonding orbitals exhibiting characteristics analogous
to the C—O bonding. The analysis of HOMO, HOMO-1, and
HOMO-2 reveals that the Ru—Ge bonding in RuGeO(CO);~
involves one electron-sharing ¢ bonding as well as two
additional dative 7 bonding interactions, reminiscent of the
recently reported metal—metal triple bonding in AFe(CO);~
(A = Ge, Sn, Pb, As, Sb, and Bi), UFe(CO),”, and
OUFe(CO);~ complexes.”> ™’

In the cases of RuGeO(CO),” and RuGeO(CO);~, the
HOMO is dominated by a o-type Ru—Ge electron-sharing
bonding orbital with composition of 63% (hybrid orbitals Ru:
15% 4d + 10% Sp; hybrid orbitals Ge: 13% 4s + 25% 4p) and
60% (hybrid orbitals Ru: 15% 4d + 9% Sp; hybrid orbitals Ge:
12% 4s + 24% 4p), respectively. The HOMO—2 and HOMO—
3 demonstrate significant Ru 3d to CO 2p* back-donation,
while the remaining orbitals are too complex for further
assignment. No similar dative z-bonding interactions are
discovered between the Ru and Ge atoms. Additionaly, a
distinct interaction between the fifth CO and Ge is evident
from the HOMO of RuGeO(CO);". Based on their chemical
bonding characteristics, RuGeO(CO),” and RuGeO(CO);~
can be analogously viewed as monometal carbonyl complexes
akin to the recently reported Fe(CO);~ and Fe(CO)4~
complex anions.”’ This implies that the oxides of Ge and C
in the same main group, namely, GeO and CO, present a
similar chemical bonding property within these metal carbonyl
complexes, thereby demostrating the semimetal nature of Ge.

To gain more chemically intuitive pictures of the different
bonding modes within RuGeO(CO);~ and RuGeO(CO),”,
adaptive natural density partitioning (AANDP) analysis was
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Figure 4. Isosurface map of unpaired spin density distributions for the most stable isomers of RuGeO(CO),~ (n = 3—5) calculated at the B3LYP/
6-311G(d) (Ge, C, O)/def2-TZVPP (Ru) level of theory (Isosurface value = 0.003).

conducted and shown in Figure S7. Given that RuGeO(CO),~
complexes are all open-shell species, only the a electrons are
selectively analyzed, which also reveals one covalent ¢ and two
Ru-to-Ge dative 7 bonds within RuGeO(CO);”, contrasting
with the sole covalent Ru—Ge ¢ bond found in RuGeO-
(CO),™

The disparity in chemical bonding partially elucidates why
the experimental VDE value of RuGeO(CO);~ (3.20 eV)
exceeds those of RuGeO(CO),” (2.89 eV) and RuGeO-
(CO)s™ (3.08 eV). The evolution of the HOMO energy also
parallels the changing trend in ADE/VDE values. To pinpoint
the electron detachment site more precisely, isosurface map
illustrating unpaired spin density distributions for RuGeO-
(CO),” (n = 3=5) are computed and visualized in Figure 4,
revealing that the majority of spin densities are located on the
center Ru atom for RuGeO(CO),”, while they are
concentrated on the antiorbital of Ge—O for RuGeO(CO),~
and RuGeO(CO);". Accordingly, the Ru center adopts a 17-
electron configuration in RuGeO(CO);™ and an 18-electron
configuration in the other two complexes. Obviously, electron
detachment from the antiorbital is more favorable, thereby
partially accounting for the observed decreasing followed by
increasing VDE trend across the RuGeO(CO),” (n = 3-5)
series.

What is on earth responsible for the alteration of the
bonding characteristics with the gradual augmentation of the
CO ligands? The weaker electronegativity of the Ge atom
compared to that of the C atom leads to diminished repulsion
between Ge and Ru in contrast to C and Ru, as evidenced by
the electrostatic potential energy in Figure S6. On the other
hand, the Ge=O bonding withdraws electron density from Ge
to the O atom, facilitating electron migration from Ru orbitals
into the Ge=O antibonding orbital. This mechanism mirrors
the stronger and shorter U=Fe bond in the case of
OUFe(CO)," relative to that of UFe(CO),”. Furthermore,
the Ru—Ge interaction is attenuated by the trans effect arising
from the axial coordination of the CO to Ru in Ru(CO), for
RuGeO(CO),” and RuGeO(CO);".

In this study, a series of heterobinuclear transition-metal-
main-group metal oxide carbonyls, RuGeO(CO),” (n = 3-5),
generated via a laser vaporization supersonic cluster source, are
characterized by combining mass-selected photoelectron
velocity map imaging spectroscopy and theoretical calculations.
The experimentally observed nonmonotonic ADE/VDE value
trend indicates a significant transition in both the geometrical
and electronic structures that contributes to experiments.
Chemical bonding analysis reveals that RuGeO(CO);~
exhibits all carbonyl ligands bound to the Ru center, featuring

Ru—Ge multiple bonds involving one covalent ¢ and two Ru-
to-Ge dative 7 bonds. In RuGeO(CO),”, three terminal CO
ligands are positioned in the equatorial plane, along with one
terminal CO ligand in the axial plane and a terminal GeO
ligand forming a Ru—Ge ¢ bond. In RuGeO(CO);", the fifth
CO loosely interacts to Ge atom through physical absorption,
building upon the structure of RuGeO(CO), . This work
closes a gap in the quantitative physicochemical character-
ization of heteronuclear oxide carbonyl complexes and
provides a better understanding of the catalytic reaction of
CO and GeO on transition-metal surfaces at the molecular
level.
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